Positive solution to a singular $(k,n-k)$ conjugate boundary value problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Solution for Boundary Value Problem of Fractional Dierential Equation

In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.

متن کامل

Positive solution for boundary value problem of fractional dierential equation

In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.

متن کامل

Positive Solutions to a Singular Second Order Boundary Value Problem

In this paper, we establish some criteria for the existence of positive solutions for certain two point boundary value problems for the singular nonlinear second order equation −(ru ) + qu = λf (t, u ) on a time scale T. As a special case when T = R, our results include those of Erbe and Mathsen [11]. Our results are new in a general time scale setting and can be applied to difference and q-dif...

متن کامل

The Existence of Positive Solution to Three-Point Singular Boundary Value Problem of Fractional Differential Equation

and Applied Analysis 3 Definition 2.2. The fractional derivative of order q > 0 of a continuous function x : 0, ∞ → R is given by Dx t 1 Γ ( n − q) ( d dt )n∫ t 0 x s t − s q−n 1 ds, 2.2 where n q 1, provided that the right side is pointwise defined on 0,∞ . Lemma 2.3 see 7 . 1 If x ∈ L 0, 1 , ρ > σ > 0, then DIx t Iρ−σx t . 2 If ρ > 0, λ > 0, then Dρtλ−1 Γ λ /Γ λ − ρ tλ−ρ−1. Lemma 2.4 see 12 ....

متن کامل

Positive Solutions for a Singular Third Order Boundary Value Problem

The existence of positive solutions is shown for the third order boundary value problem, u′′′ = f (x,u),0 < x < 1, u(0) = u(1) = u′′(1) = 0, where f (x,y) is singular at x = 0 , x = 1 , y = 0 , and may be singular at y = ∞. The method involves application of a fixed point theorem for operators that are decreasing with respect to a cone. Mathematics subject classification (2010): 34B16, 34B18.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematica Bohemica

سال: 2011

ISSN: 0862-7959,2464-7136

DOI: 10.21136/mb.2011.141451